Wafer-scale Thermodynamically Stable GaN Nanorods via Two-Step Self-Limiting Epitaxy for Optoelectronic Applications

نویسندگان

  • Hyun Kum
  • Han-Kyu Seong
  • Wantae Lim
  • Daemyung Chun
  • Young-il Kim
  • Youngsoo Park
  • Geonwook Yoo
چکیده

We present a method of epitaxially growing thermodynamically stable gallium nitride (GaN) nanorods via metal-organic chemical vapor deposition (MOCVD) by invoking a two-step self-limited growth (TSSLG) mechanism. This allows for growth of nanorods with excellent geometrical uniformity with no visible extended defects over a 100 mm sapphire (Al2O3) wafer. An ex-situ study of the growth morphology as a function of growth time for the two self-limiting steps elucidate the growth dynamics, which show that formation of an Ehrlich-Schwoebel barrier and preferential growth in the c-plane direction governs the growth process. This process allows monolithic formation of dimensionally uniform nanowires on templates with varying filling matrix patterns for a variety of novel electronic and optoelectronic applications. A color tunable phosphor-free white light LED with a coaxial architecture is fabricated as a demonstration of the applicability of these nanorods grown by TSSLG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled synthesis of single-crystalline InN nanorods

Single-crystalline InN nanorods were successfully grown on c-Al2O3, GaN, Si(111), and Si(100) substrates by non-catalytic, template-free hydride metal–organic vapour phase epitaxy (H-MOVPE). It was evaluated thermodynamically and confirmed experimentally that the domain of nanorod growth lies in the vicinity of the growth–etch transition. Stable gas phase oligomer formation is suggested as the ...

متن کامل

Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification

Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gall...

متن کامل

ZnO Microcrystals for Light Emitting Diode and Photovoltaic Applications with Integration on Flexible Substrates

We report a new integration approach to produce arrays of ZnO microcrystals for optoelectronic and photovoltaic applications. Demonstrated applications are n-ZnO/p-GaN heterojunction LEDs and photovoltaic cells. The integration process uses an oxygen plasma treatment in combination with a photoresist pattern on Magnesium doped GaN substrates to define a narrow sub-100nm width nucleation region....

متن کامل

Establishing a Two Step FACELO Process in HVPE

In order to reduce the effort needed to create self-separated, freestanding gallium nitride (GaN) layers by thick growth in hydride vapor phase epitaxy (HVPE), we established a two-step facet-controlled lateral overgrowth (FACELO) process in HVPE. Just as for the metalorganic vapor phase epitaxy (MOVPE) FACELO process, the template is produced by MOVPE growth directly on sapphire. This initial ...

متن کامل

III-nitride core–shell nanorod array on quartz substrates

We report the fabrication of near-vertically elongated GaN nanorods on quartz substrates. To control the preferred orientation and length of individual GaN nanorods, we combined molecular beam epitaxy (MBE) with pulsed-mode metal-organic chemical vapor deposition (MOCVD). The MBE-grown buffer layer was composed of GaN nanograins exhibiting an ordered surface and preferred orientation along the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017